"گراف (ریاضی)" کے نسخوں کے درمیان فرق

1,085 بائٹ کا اضافہ ،  14 سال پہلے
کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
===دوحصائی مخطط ===
ایسا مخطط جس کے اقمات مجموعہ کو دو ذیلی مجموعات ''A'' اور ''B'' میں بانٹا جا سکے اس طرح کہ ہر کنارہ مجموعہ ''A'' کے کسی قمہ کو مجموعہ ''B'' کے کسی قمہ سے جوڑتا ہو۔ تصویر میں اقمات کے ذیلی مجموعات کو "نیلے" اور "سرخ" رنگ میں دکھایا گیا ہے۔
{{اصطلاح برابر|
سمتی مخطط|
directed graph (digraph)}}
[[Image:Directed.svg|left|thumb|150px]]
=== سمتی مخطط===
ایسا مخطط جس میں کناروں کی سمت مقرر ہو جو تیر کے نشان سے دکھائی جاتی ہے۔ اسے یوں سمجھا جا سکتا ہے جیسے مقام ''ا'' اور ''ب'' کے درمیان ریل‌گاڑی مقام ''ا'' سے ''ب'' کی طرف چلتی ہو مگر دوسری جانب نہیں۔
:تعریف: سمتی مخطط ''D'' مشتمل ہوتا ہے ایک مجموعہ جسے ''اقمات'' کہتے ہیں، اور اقمات کے جوڑوں کی مرتب فہرست جنہیں ''تیر'' کہتے ہیں۔ اقمات کو "اقمات مجموعہ" <code dir="ltr">V(D)</code> لکھتے ہیں، اور تیروں کو "تیر فہرست" <code dir="ltr">A(D)</code> لکھتے ہیں۔ اگر ''a'' اور ''b'' اقمات ہیں تو تیر ''ab'' کی سمت ''a'' سے ''b'' ہوتی ہے، یا ''a'' کو ''b'' سے جوڑتا ہے (مگر ''b'' کو ''a'' سے نہیں جوڑتا)۔
 
 
 
[[Image:Isomorphic_unlabeled_graphs.svg|left|thumb|250px|دونوں ناملصق مخطط متشاکل ہیں]]
 
===متشاکل مخطط ===
دو مخطط ''G'' اور ''F'' کو متشاکل کہا جائے گا اگر ''G'' کو ''F'' میں تبدیل کیا جا سکے اس کے ملصق کی جگہ تبدیل کر کے۔ دوسرے الفاظ میں اگر ''G'' اور ''F'' کی اقمات میں ایسا ارتباط واحد الواحد ہو، کہ ''G'' میں کسی بھی "اقمات جوڑے" کو جوڑنے والے کنارے کی تعداد برابر ہو ''F'' میں ارتباطی "اقمات جوڑے" کو جوڑنے والے کناروں کی تعداد کے۔
 
11,218

ترامیم