"خود مشابہ مجموعہ (مستوی میں)" کے نسخوں کے درمیان فرق

کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
ان ذیلی مجموعات کو سے ان [[مماثلتیہ]] کے زریعہ حاصل کیا جا سکتا ہے:
:<math>S_1=T_1(S), \, S_2=T_2(S), \, S_3=T_3(S), \, S_4=T_4(S) </math>
جہاں مماثلتیہ یہ ہیں
:<math>T_1\left(\begin{bmatrix}x \\ y \end{bmatrix}\right) =
\frac{1}{2} \begin{bmatrix} 1 & 0 \\
\begin{bmatrix}\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}
</math>
 
{{اصطلاح برابر|
میل <br> غیر خالی <br> منفرد|
union <br> non-empty <br> unique}}
=== مسلئہ اثباتی===
اگر <math>T_1, T_2, \cdots, T_n </math> سکڑنے والی [[مماثلتیہ]] ہوں، جن کا سکڑنے کا عدد برابر ہو، تو پھر ایک منفرد، غیر خالی، بند، اور قابل احاطہ مجموعہ ''S'' ہو گا، جبکہ
:<math>S = T_1(S) \cup T_2(S) \cup \cdots \cup T_n(S) </math>
اور اگر مجموعات <math>\ T_1(S), T_2(S), \cdots, T_n(S) </math> نامتداخل ہوں، تو مجموعہ ''S'' خود مشابہ ہو گا۔
 
 
 
 
11,218

ترامیم