"خود مشابہ مجموعہ (مستوی میں)" کے نسخوں کے درمیان فرق

کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
اگر <math>\ T:\mathbb{R}^2 \to \mathbb{R}^2</math> ایسا [[لکیری استحالہ]] ہو، جو مجموعہ کو چھوٹا یا بڑا کرتا ہو۔ اگر <math>\ 0<s<1</math> تو اس کو ''سکیڑنا'' کہیں گے (تصویر 5)، اور اگر <math>\ s>1</math> تو اسے ''پھیلانا'' کہیں گے۔ تصویر 5 میں نیلے مجموعہ کو سکیڑ کر سرخ مجموعہ بنتا دکھایا گیا ہے۔
 
[[Image:decompose_self_similar.png|framethumb|center|300px|تصویر 6]]
 
== خود مشابہ مجموعہ==
union <br> non-empty <br> unique <br> unit square <br> self-similar}}
 
[[Image:three_similitudes_self_similar.png|framethumb|250px|تصویر 7]]
[[Image:three_similitudes_self_similar_step2.png|framethumb|250px|تصویر 8]]
=== مثال===
 
\begin{bmatrix}0 \\ \frac{1}{2} \end{bmatrix}
</math>
تو تین نامتداخل مربع <math>\ T_1(U), T_2(U), T_3(U) </math> بنتے ہیں (تصویر 7) ۔ اب ان تین مربع پر (علیحدہ علیحدہ) یہ تین مماثلتیہ استعمال کیے جائیں، تو تصویر 8 حاصل ہو گی۔ اسی طرح یہ عمل جاری رکھا جائے تو تصویر 9 حاصل ہوتی ہے، جو کہ مشہور سیرپنسکی تکون ہے۔ (تصویر 9 میں سیرپنسکی تکون سفید رنگ میں دکھائ ہے۔)
 
[[Image:Sierpinski_triangle.png|frame|تصویر 9. سیرپنسکی (Sierpinski) تکون ]]
[[Image:sierpinski_split_to_show_similarity.png|thumb|200px|تصویر 10]]
 
غور کرو کہ تصویر 7 میں مربع ''U'' اقلیدسی فضا <math>\mathbb{R}^2</math> (پلین) میں ہے، اس لیے اس کا [[Dimension|بُعد]] 2 ہے۔ اس مربع کا رقبہ 1 ہے۔ مماثلتیہ کے استعمال کے بعد جو تین مربع کا خاکہ بنتا ہے (نیلے) اس کا کل رقبہ <math>\frac{3}{4}</math> ہے۔ ہر نیلے مربع پر مماثلتیہ کے استعمال سے تصویر 8 ملتی ہے، اور اب ہمارے خاکہ کا رقبہ <math>\left(\frac{3}{4}\right)^2</math> ہے۔ مماثلتیہ کے ''n'' بار استعمال کے بعد بننے والے خاکہ کا رقبہ <math>\left(\frac{3}{4}\right)^n</math> ہو گا، اور
:<math>\lim_{n\to \infty} \left(\frac{3}{4}\right)^n = 0</math>
یعنی تصویر 9 میں خاکہ (سیرپنسکی تکونتکون، سفید رنگ میں) کا رقبہ صفر (0) ہو گا۔ یاد رہے کہ ایک لکیر، جس کا [[Dimension|بُعد]] 1 ہوتا ہے، کا رقبہ صفر ہوتا ہے۔ اس سے یہ نتیجہ نکلتا ہے کہ سیرپنسکی تکون کا بُعد 1 ہے۔ اگرچہ سیرپنسکی تکون <math>\mathbb{R}^2</math> میں نظر آتی ہے، مگر اس میں سوراخ اتنے ہیں کہ یہ ایک لکیر کی ماند ہے (جس کا بُعد 1 ہوتا ہے)۔ سیرپنسکی تکون ایک [[Fractal|فریکٹل]] ہے۔
 
یہاں یہ واضح کر دیں کہ تصویر 9 ایک حد تک تفصیل میں دکھائی جا سکتی ہے۔ بہت چھوٹی تفصیل واضح ہونا تصویر میں ممکن نہیں۔
 
یہ واضح کرنے کے لیے کہ شیرپنسکی تکون، "خود مشابہ مجموعہ" کی تعریف پر پورا اترتی ہے، ہم نے تصویر 10 مین جان بوجھ کر اسے تین حصوں <math>S_1, S_2, S_3</math> میں بانٹ کر دکھایا ہے، اس طرح کہ ہر حصہ بڑے سیرپنسکی [[تکون]] ''S'' (تصویر 9) پر ایک مماثلتیہ <math>T_1, T_2, T_3</math> کے عمل سے بنا ہے۔ یاد رہے کہ ان تین حصوں میں سے ہر حصہ بھی "خود مشابہ" ہے، اور یہ ان حصوں کے اسطرح مذید حصے کرنے پر بھی برحق ہے (کیونکہ سیرپنسکی تکون ایک فریکٹل ہے)۔
 
 
 
=== مسلئہ اثباتی===
11,218

ترامیم