"خود مشابہ مجموعہ (مستوی میں)" کے نسخوں کے درمیان فرق

کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
کوئی خلاصۂ ترمیم نہیں
{{اصطلاح برابر|
مجموعہ <br> قابل احاطہ <br> بند <br> کھلا <br> مطابقت <br> گھماؤ <br> ترجمہ <br> متداخلتراکب <br> نامتداخلناتراکب <br> سکڑاو <br> پھیلاؤ <br> خود مشابہ <br> اتحاد|
set <br> bounded <br> closed <br> open <br> congruence <br> rotate <br> translate <br> overlapping <br> non-overlapping <br> contraction <br> expansion <br> self-similar <br> union}}
 
</tr>
</table>
===متداخلتراکب مجموعہ جات ===
اگر دو مجموعہ جات کا کچھ حصہ سانجھا ہو تو ان کو ''متداخلتراکب'' کہا جاتا ہے، ورنہ نامتداخل۔ناتراکب۔ مثال تصویر 3 میں متداخلتراکب مجموعات دکھائے ہیں، اور تصویر 4 میں نامتداخلناتراکب مجموعات۔
 
 
ایک بند اور قابل احاطہ مجموعہ (جو <math>\mathbb{R}^2</math> کا ذیلی مجموعہ ہو) کو ''خود مشابہ'' کہا جائے گا، اگر اس مجموعہ ''S'' کو یوں لکھا جا سکے
:<math>S = S_1 \cup S_2 \cup \cdots \cup S_n</math>
جہاں <math>S_1, S_2, \cdots, S_n</math> نامتداخلناتراکب مجموعات ہیں، اور ان میں سے ہر ایک بمطابق ہے ''S'' کی سکڑی ہوئی صورت کے (جہاں سکڑنے کا عدد <math>\ 0<s<1</math> ہے)۔ یہاں علامت <math>\cup</math> اتحاد کے لیے استعمال ہوئ ہے۔
 
 
\begin{bmatrix}0 \\ \frac{1}{2} \end{bmatrix}
</math>
تو تین نامتداخلناتراکب مربع <math>\ T_1(U), T_2(U), T_3(U) </math> بنتے ہیں (تصویر 7) ۔ اب ان تین مربع پر (علیحدہ علیحدہ) یہ تین مماثلتیہ استعمال کیے جائیں، تو تصویر 8 حاصل ہو گی۔ اسی طرح یہ عمل جاری رکھا جائے تو تصویر 9 حاصل ہوتی ہے، جو کہ مشہور سیرپنسکی تکون ہے۔ (تصویر 9 میں سیرپنسکی تکون سفید رنگ میں دکھائ ہے۔)
 
غور کرو کہ تصویر 7 میں مربع ''U'' اقلیدسی فضا <math>\mathbb{R}^2</math> (پلین) میں ہے، اس لیے اس کا [[Dimension|بُعد]] 2 ہے۔ اس مربع کا رقبہ 1 ہے۔ مماثلتیہ کے استعمال کے بعد جو تین مربع کا خاکہ بنتا ہے (نیلے) اس کا کل رقبہ <math>\frac{3}{4}</math> ہے۔ ہر نیلے مربع پر مماثلتیہ کے استعمال سے تصویر 8 ملتی ہے، اور اب ہمارے خاکہ کا رقبہ <math>\left(\frac{3}{4}\right)^2</math> ہے۔ مماثلتیہ کے ''n'' بار استعمال کے بعد بننے والے خاکہ کا رقبہ <math>\left(\frac{3}{4}\right)^n</math> ہو گا، اور
اگر <math>T_1, T_2, \cdots, T_n </math> سکڑنے والی [[مماثلتیہ]] ہوں، جن کا سکڑنے کا عدد برابر ہو، تو پھر ایک منفرد، غیر خالی، بند، اور قابل احاطہ مجموعہ ''S'' ہو گا، جبکہ
:<math>S = T_1(S) \cup T_2(S) \cup \cdots \cup T_n(S) </math>
اور اگر مجموعات <math>\ T_1(S), T_2(S), \cdots, T_n(S) </math> نامتداخلناتراکب ہوں، تو مجموعہ ''S'' خود مشابہ ہو گا۔
 
 
11,218

ترامیم