بینفورڈ کا قانون
بینفورڈ قانون، جسے "پہلی رقم قانون" بھی کہتے ہیں، بتاتا ہے کہ اعدادی فہرستوں میں جو بہت سی (مگر تمام نہیں) حقیقی-دنیا ماخذ ڈیٹا سے بنی ہوں، میں رقمِ اول ایک خاص طرح نایکساں وزع ہوتی ہے۔ اس قانون کے مطابق، رقمِ اول 1 ہو گی تقریباً ایک تہائی دفعہ اور بڑے عدد بطور رقمِ اول کم ہوتے تعدد کے ساتھ وارد ہوتے ہیں، حتٰی کہ 9 بطور رقمِ اول بیس میں سے ایک دفعہ دیکھا جاتا ہے۔ رقم اول کی یہ توزیع منطقی طور پر بنتی ہے جب اقدار کی توزیع لاگرتھمی ہو۔ نیچے دی وجوہات کی بنا پر حقیقی-دنیا میں پیمائشیں اکثر لاگرتھمی وزع ہوتی ہیں (یا، پیمائشوں کا لاگرتھم یکساں توزیع کا حامل ہوتا ہے)۔
اصطلاح | term |
---|---|
برزخ |
bar |
یہ برخلاف-عقل نتیجہ وسیع ڈیٹا مجموعہ پر لاگو دیکھا گیا ہے، جس میں بجلی کے bill, گلی رہائشی پتے، سہامی قیمتیں، آبادی کے اعداد، مرنے کی شرح، دریاوں کی لمبائی، طیبیعاتی اور ریاضیاتی دائم اور عملیات جو طاقت قانون سے توضیح ہوں (جو قدرت میں خاصے عام ہیں)۔ یہ قانون لاگو رہتا ہے چاہے پیمائش کی اکائی کوئی بھی ہو۔
اس کا نام طبیعیات فرینک بینفورڈ پر رکھا گیا ہے جس نے اسے 1938 میں لکھا۔[1]
ریاضیاتی بیان
ترمیمبینفورڈ قانون کا بیان ہے کہ پہلی رقم (d ∈ {1, …, b − 1}) d
اساس (b ≥ 2) b
میں، احتمال
سے پائی جاتی ہے۔
یہ مقدار لاگرتھمی میزان میں d اور d + 1 کے درمیان فضا ہے۔
اساس 10 میں رقمِ اول کی توزیع بینفورڈ قانون کے مطابق درج ذیل ہے، جہاں d رقمِ اول ہے اور p احتمال:
d | p |
---|---|
1 | 30.1% |
2 | 17.6% |
3 | 12.5% |
4 | 9.7% |
5 | 7.9% |
6 | 6.7% |
7 | 5.8% |
8 | 5.1% |
9 | 4.6% |
اعداد 12, 0.3, 0.054 میں رقمِ اول بالترتیب 1, 3, 5 ہیں۔
اصطلاح | term |
---|---|
میزان لاتفاوت |
scale invariance |
میزان لاتفاوت
ترمیماگر کوئی اعداد کی فہرست بینفورڈ قانون پر پورا اترتی ہے تو اس فہرست کو کسی عدد سے ضرب دے کر بننے والی فہرست بھی بینفورڈ قانون پر پورا اترے گی۔ اس خاصے کو میزان لاتفاوت کہتے ہیں۔
تجزیہ
ترمیمسٹیو سمتھ نے اپنے تجزیے[2] میں بتایا ہے کہ بینفورڈ قانون میں کوئی اچھنپا نہیں۔ کسی ڈیٹا فہرست میں سے رقمِ اول نکالنے کے لیے اعداد کو 10 کی طاقت سے ضرب یا تقسیم کیا جاتا ہے۔ مثلاً 12, 0.3, 0.054 میں رقمِ اول نکالنے کے لیے بالترتیب 10 سے تقسیم، 10 سے ضرب اور 100 سے ضرب دینا پڑتا ہے۔ یہی عمل لاگرتھم-شکن کو جنم دیتا ہے اور پھر آدمی حیران ہوتا ہے کہ ڈیٹا لاگرتھمی معلوم ہوتا ہے۔ بینفورڈ قانون عام طور پر ایسے ڈیٹا پر پورا اترتا ہے جس کے اعداد کئی دہائیوں پر پھیلے ہوں۔ مثلاً شہروں کی آبادی کی فہرست عموماً اس قانون کی پاسداری کرے گی، مگر انسانی قد کی فہرست بینفورڈ قانون کے مطابق نہیں ہو گی۔ سمتھ نے ڈیٹا کی توزیع پر وہ شرائط بھی بتائی ہیں جو بینفورڈ قانون کے لاگو ہونے کے لیے ضروری ہیں۔
- ↑ Frank Benford (1938)۔ <551:TLOAN>2.0.CO;2-G "The law of anomalous numbers"۔ Proceedings of the American Philosophical Society۔ 78 (4): 551–572 (subscription required)
- ↑ Steven Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", Ch. 34.
Benford's law |
ویکی ذخائر پر بینفورڈ کا قانون سے متعلق سمعی و بصری مواد ملاحظہ کریں۔ |